合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 微流控器件結構對水/水微囊形成過程、界面張力的影響規律(三)
> 基于陰離子?非離子型表面活性劑復配最佳強化潤濕高效驅油體系——結果與討論、結論
> 分子動力學模擬不同濃度仿生黏液-水界面的界面張力
> 水相PH、鹽濃度對380號燃料油油水界面張力的影響
> 硝化纖維素塑化效果與其表面張力的變化規律
> 一體化生物復合乳液研制及在碳酸鹽巖體積加砂壓裂中的應用(三)
> Delta-8使用新方法測試CMC,而不是表面張力測試法——方法
> 高分子類助劑主要增效機制及在除草劑領域應用機理
> 基于振蕩氣泡法測定聲懸浮液滴的表面張力
> N-十四酰基天冬氨酸及其鈉鹽合成路線、制備、表面張力等性能測定(一)
推薦新聞Info
-
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(下)
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(上)
> 不同結晶結構的脂肪晶體顆粒界面自組裝行為、儲藏穩定性研究
> 新型POSS基雜化泡沫穩定劑表面張力測定及對泡沫壓縮性能的影響(三)
> 新型POSS基雜化泡沫穩定劑表面張力測定及對泡沫壓縮性能的影響(二)
> 新型POSS基雜化泡沫穩定劑表面張力測定及對泡沫壓縮性能的影響(一)
> 多功能膜材研發:界面張力已成為整套工藝鏈協同下動態演化的核心控制點
溫度對水—十二烷基硫酸鈉體系與純水體系界面張力、厚度的影響——模擬方法
來源:河南化工 瀏覽 459 次 發布時間:2025-04-14
摘要:采用分子動力學模擬技術,對水及其表面活性劑體系的汽—液界面行為進行了研究。模擬結果表明,隨著溫度的升高,純水體系液相主體密度降低,氣—液界面厚度增大,界面張力逐漸減小;水—十二烷基硫酸鈉體系與純水體系相比,汽—液界面厚度明顯增大,汽—液界面張力明顯減小,其隨溫度的變化規律和純水體系一致。
眾所周知,表面活性劑具有降低水的表面張力能力,其在氣—液界面上的吸附行為是發揮效用的關鍵。氣—液界面熱力學行為一直是相變傳熱傳質研究的重點。由于氣—液界面厚度非常薄,這就使得其理論分析和實驗研究變得十分困難。近些年來,隨著計算機技術的迅猛發展,越來越多的學者采用分子動力學(MD)模擬方法,來研究氣—液相變界面特性。Kuhn等采用分子動力學方法,考查了氣—液界面上的脂肪醇聚氧乙烯醚非離子表面活性劑(C12E5)單分子層的結構參數以及分子的動態行為。Wu等采用分子動力學模擬技術,分析了不同種類的胺基Gemini型表面活性劑在正庚烷—水體系的界面張力、密度分布,以及分子的微觀結構,其模擬結果與實驗吻合良好。苑世領等用分子動力學模擬的方法,研究了陰離子表面活性劑十二烷基硫酸鈉(SDS)在汽—液界面上的結構和動力學性質。肖紅艷等研究了不同油相和鹽度條件下表面活性劑—烷烴—水體系的界面結構,給出了徑向分布函數、二面角幾率變化等動力學結構信息。本文擬采用分子動力學模擬方法,利用LAMMPS軟件模擬水及其表面活性劑體系的氣—液界面行為。
1模擬方法
1.1模擬體系
采用直角坐標系,水體系的模擬盒子(初始狀態)如圖1所示,其大小為Lx×Ly×Lz=12 nm×4 nm×4 nm。液體水分子以面心立方(FCC)晶格方式排列于模擬盒子的中央,汽相分別處于液相的左右兩側,整個模擬體系中有兩個氣—液界面。
圖1水體系的模擬盒子(初始狀態)
采用直角坐標系,水—十二烷基硫酸鈉表面活性劑體系的模擬盒子(初始狀態)如圖2所示,其大小為Lx×Ly×Lz=12 nm×4 nm×4 nm。液體水分子以隨機分布的方式位于模擬盒子的中央,兩側各有一相對的表面活性劑單分子層,汽相分別處于液相的左右兩側,整個模擬體系中有兩個氣—液界面。
圖2水—十二烷基硫酸鈉體系的模擬盒子(初始狀態)
1.2勢能模型
水分子模型很多,如SPC、SPCE、TPI3P和TPI4P等,其結構示意圖和模型參數分別見圖3和表1。水分子的勢能函數如式(1)所示。
圖3不同水分子模型的結構示意圖
圖3a中為SPC、SPCE和TIP3P模型,b為TIP4P模型(L:負電荷作用點;H:正電荷作用點)
表1水分子模型參數
表中:q,電量,C;σ,尺度參數,nm;ε,能量參數,J;kB,玻爾茲曼常數,J/K;r,分子間距,nm;θ鍵角,(°)。
在水—表面活性劑體系的MD模擬中,十二烷基硫酸鈉采用全原子模型,力場參數基于AMBER力場,其函數形式如方程(2)所示。
式中:kr、kθ、Vn分別為鍵力常數、彎曲力常數、二面角扭曲常數;l0、θ0分別為標準鍵長和標準鍵角;n為整數(繞鍵旋轉360°時出現的能量最小值的數目);φ為二面角;rij為原子i和j之間的距離;靜電相互作用項中的q表示原子上的電荷數,e。不同原子間的范德華相互作用項中的εij和σij,采用Lorentz-Berthelot混合規則。
1.3模擬細節
水體系模擬在x、y、z方向均采用周期性邊界條件,原子間力的截斷半徑為12 nm,模擬時間步長為1 fs,總模擬時間為0.6 ns,前0.4 ns使得系統達到平衡,后0.2 ns統計計算并輸出系統的密度分布、界面張力以及界面厚度。采取正則系綜(NVT),并采用Woodcock控溫法維持體系溫度衡定;依照設定的溫度,隨機分布分子的初始平動速度;為了保證水分子不偏離盒子中心,每隔1 000步矯正體系的質心,使之在x、y、z方向始終處于盒子的中心處;水—十二烷基硫酸鈉體系模擬原子間力的截斷半徑為10 nm,庫倫力的截斷半徑為12 nm;模擬時間步長為1 fs,總模擬時間為1.4 ns,前1.0 ns使得系統達到平衡,后0.4 ns統計計算并輸出數據,其他的模擬設置同水體系一樣。本文模擬數據均采用LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)軟件計算得到。