合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 往復振動篩板塔強化低界面張力萃取體系傳質效率(二)
> 我國地表水優良比例已接近發達國家水平
> 超細纖維:固體表面能的測量過程與操作步驟
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 表面活性劑對環氧漿液的黏度、表面張力、接觸角、滲透性的影響(一)
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應的影響——實驗
> 絲素蛋白作為表面活性劑實現納米級設備的水基加工
> GA、WPI和T80復合乳液體系的脂肪消化動力學曲線、界面張力變化(一)
> 不同溫度下氟碳鏈長度對表面活性劑理化性能的影響
> GA、WPI和T80復合乳液體系的脂肪消化動力學曲線、界面張力變化(二)
推薦新聞Info
-
> 納米熔鹽形成機理、表面張力測定及影響因素研究(一)
> ?《Nature》論文致謝欄常客:超微量天平的生物膜研究顛覆性應用
> Na2CO3溶液與模擬油反應不同時間后產物的界面張力、剪切黏度(二)
> Na2CO3溶液與模擬油反應不同時間后產物的界面張力、剪切黏度(一)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(下)
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(上)
> 不同結晶結構的脂肪晶體顆粒界面自組裝行為、儲藏穩定性研究
?化學驅:油藏防竄劑用量和濃度多少為好?
來源:中國石油大學(華東) 瀏覽 947 次 發布時間:2024-08-12
化學驅是提高老油田采收率的一種重要方法,當注入水進入多孔介質后,在化學劑作用下,不但可以增加水相粘度,降低流度比,達到減少指進現象,提高采出程度的目的,還可以減小界面張力,增加毛管數,改變巖石潤濕性,降低原油在巖石壁面上的吸附,有利于原油開采。
在20世紀90年代初,我國先后在大慶、吉林、勝利和長慶油田部署開發試驗區,均取得了良好的開發效果和經濟效益。
上述試驗結果表明化學驅可有效降低老油田的含水率,提高采出程度。然而由于油藏中存在高滲透層或大孔道,化學劑溶液可能沿這些優勢通道發生“竄流”現象。化學劑的竄流會造成化學劑在采油井過早突破,不僅造成化學劑的極大浪費,增加了產出液的處理量和難度,而且造成剩余油飽和度較高的低滲透帶無法得到較好的動用,化學劑波及程度低,影響增產效果。
針對化學劑驅化學劑竄的研究也隨之發展。此外,大量礦產數據統計發現,化學驅含水緩降期特征是化學劑產出的“先兆”信號。
油藏防竄劑用量和濃度優化方法一,如圖1所示,包括:
收集礦場化學驅區塊生產井的含水率和產液量數據,計算生產井的含水率下降速度和注入水量;
由已知的生產井的含水率下降速度和注入水量,根據防竄劑注入參數優化表插值選取防竄劑的封堵半徑和注入濃度;
根據生產井的參數計算防竄劑的用量。
油藏防竄劑用量和濃度優化方法二,與方法一區別在于:
計算生產井的含水率下降速度和注入水量;包括:
繪制含水率和注入水PV體積的關系曲線,橫坐標為注入水體積,PV數,縱坐標為含水率,%;在化學劑竄流之前,將含水率開始下降的點定義為下降點;將含水率下降1%時的點定義為轉換點;含水率下降速度指轉換點的斜率的絕對值;注入水量指下降點與轉換點之間的距離。
防竄劑注入參數優化表建立方法包括:
建立不同的儲層物性和流體性質的化學驅數據文件,其中,儲層物性包括有效厚度、凈毛比、孔隙度、級差、滲透率變異系數和平均滲透率;流體性質包括:原油粘度、殘余油飽和度和油水界面張力;
使用油藏數值模擬軟件對建立的化學驅數據文件開展計算;計算結束后,統計每個數值模擬模型的含水率下降速度和注入水量,建立含水率下降速度和注入水量的樣本即化學驅樣本;
對每個化學驅樣本使用不同用量和不同濃度的防竄劑進行調堵模擬,以綜合增油指標,優化出最佳防竄劑注入量和注入濃度;
將優化出最佳防竄劑注入量轉換為封堵半徑;
將優化出的最佳防竄劑注入量和注入濃度建立防竄劑注入參數優化表;防竄劑注入參數優化表共有兩個自變量,分別是注入水量和含水率下降速度;每個注入水量和含水率下降速度確定兩個因變量,分別是防竄劑的封堵半徑和注入濃度。
以綜合增油指標,優化出最佳防竄劑注入量和注入濃度;包括:
對每個化學驅樣本都進行每一種濃度和每一種用量的調堵模擬,計算每次調堵模擬的綜合增油指標,選擇綜合增油指標最大時對應的用量和濃度為最佳防竄劑注入量和注入濃度。
將儲層中的有效厚度、凈毛比、孔隙度、級差、滲透率變異系數、滲透率、原油粘度、殘余油飽和度和油水界面張力對化學劑驅的影響通過含水率下降速度與注入水量這兩個綜合指標來表征,建立不同注入水量和含水率下降速度樣本。然后樣本進行化學劑調堵,通過綜合增油指標優化選擇每個樣本的最佳封堵半徑和防竄劑濃度,最終建立起封堵半徑和防竄劑用量優化表。在使用時僅通過礦場生產過程中的含水率下降速度與注入水量就可以得到防竄劑用量、防竄劑濃度和封堵半徑。克服了示蹤劑檢測等傳統方法實施難度大、成本高的缺點。