合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 不同濃度下白糖、紅糖溶液的表面張力系數變化
> 新型POSS基雜化泡沫穩定劑表面張力測定及對泡沫壓縮性能的影響(三)
> 純水表面張力與液膜拉伸形變量關系|純水表面張力測試數據
> 微量天平應用:不同二氧化鈦添加量對高溫尼龍HTN顏色、性能的影響
> SRA減縮劑濃度對溶液表面張力、砂漿凝結時間、水泥水化的影響(三)
> 涂料配方設計如何選擇潤濕劑?表面張力成為重要決定因素之一
> 表面張力變化對含氣泡液體射流破裂的影響
> 東辛原油酸性活性組分油水界面張力、動態界面擴張流變性質研究(一)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(一)
> 不同溫度下手性離子液體及二元混合物的密度和表面張力(上)
推薦新聞Info
-
> 氣凝膠的合成方法及干燥方法一覽
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(二)
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(一)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(三)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(二)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(一)
> ?《Nature》論文致謝欄常客:超微量天平的生物膜研究顛覆性應用
> Na2CO3溶液與模擬油反應不同時間后產物的界面張力、剪切黏度(二)
> Na2CO3溶液與模擬油反應不同時間后產物的界面張力、剪切黏度(一)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(二)
來源:《納米技術與精密工程》 瀏覽 7 次 發布時間:2025-09-10
2.2 SAA溶液表面張力分析
對4種表面活性劑在最佳分散濃度下的水溶液進行表面張力測試,結果表明:4種溶液的表面張力均小于蒸餾水的表面張力(本實驗用蒸餾水的表面張力為72.13x10-3 N/m);SDS溶液的表面張力最低,為28.80x10-3 N/m;其次是SDBS和D-180,分別為29.82x10-3和30.61x10-3N/m;表面張力最大的為PAA復合Tx100,為37.25x10{}^{-3}N/m.由此可以進一步證明SDS對CNFs分散性能最好,SDBS次之,PAA復合Tx100分散效果最差.
2.3 TEM及FESEM分析
由于4種表面活性劑中,SDS與SDBS的分散效果相對最佳,故在TEM下觀察對比了兩者的分散狀態,結果如圖3所示.圖3(a)為未分散的CNFs,可以明顯觀察到CNFs纏結團聚,幾乎無法找到單根CNFs.圖3(b)中可以看出,SDBS分散的CNFs纏繞現象明顯改善,可以觀察到松散的CNFs,且形貌清晰.圖3(c)中的SDS分散的CNFs分散狀態強于圖3(b),幾乎無團聚纏繞現象,單根的CNF形貌清晰且完整.
采用FESEM對4種表面活性劑分散的CNFs進行了觀察.圖4(a)為SDS分散的CNFs,可以看到單根分散的CNF;圖4(b)為D-180分散的CNFs,單根CNFs被表面活性劑包裹,分散效果明顯,但懸浮液黏度稍大;圖4(c)為PAA復合Tx100分散的CNFs,由于復合分散劑的黏度大,且分散效果不佳,CNFs相互纏結并被表面活性劑包裹,團聚現象未得到改善;圖4(d)為SDBS分散的CNFs,分散效果十分明顯.
2.4 CNFs分散體系的穩定性表征
圖5為靜置7d后4種表面活性劑分散的CNFs懸浮液的狀態.可以看出,采用SDS分散的CNFs懸浮液中未見明顯沉淀,SDBS分散的懸浮液中稍有沉淀,PAA復合Tx100分散的懸浮液和D-180分散的懸浮液中均能觀察到明顯的黑色沉淀物.
為了在短時間內測試出4種表面活性劑對CNFs懸浮液的穩定性影響,本實驗采用了離心分離的方法,實驗結果如圖6所示.在相同條件下,SDS作為分散劑時CNFs懸浮液的穩定性最好,SDBS作為分散劑時CNFs懸浮液的穩定性次之,PAA復合Tx100作為分散劑時CNFs懸浮液的穩定性最差.
2.5分散機理討論
CNFs能夠在水性體系中實現分散是由于表面活性劑分子在水溶液中會吸附或包裹在CNFs的表面,這種吸附或者包裹作用不會破壞CNFs的結構與形
貌,而是在CNFs表面產生一種非共價鍵修飾,表面活性劑分子通過疏水端吸附在CNFs的表面,有時為平躺式吸附,通過親水端與水相互作用而鉆入水中,來實現CNFs在水性體系中的分散.離子型表面活性劑(如SDS和SDBS)主要依靠其親水性基團與憎水性基團之間的庫侖吸引力來實現吸附的作用,非離子型表面活性劑(如Tx100)主要依靠親水基團之間的靜電斥力或特殊的吸附機理吸附在CNFs的管壁上保持體系穩定,阻止CNFs的團聚.
圖7為SDS在CNFs表面的吸附過程.本實驗研究發現,SDS和SDBS疏松地吸附于CNFs表面,并且隨著濃度的增加,逐漸形成膠團.當表面活性劑分子達到或超過臨界膠團濃度后,此時再增加表面活性劑的濃度,就會造成其彼此之間爭奪CNFs的情況,吸附于CNFs表面的分子量并不會再增加.相反地,溶液中膠束增多,每個膠束包含的分子數增多,從而造成膠束
爭奪表面層的活性劑分子,這不僅不能進一步降低體系的表面張力,反而會使表面張力上升,導致懸浮液的穩定性降低,團聚現象再次發生.理論上講,SDBS的分散效果應該強于SDS,因為其較SDS多出一個苯環結構,空間位阻更大,但實驗的初始分散效果并沒有與之相符,這可能與CNFs的表面性質有關.PAA與D-180為聚合物,它們在發生電離的同時包覆在CNFs表面,通過基團之間的靜電斥力來實現CNFs的分散.同時,D-180溶液還具有一定的黏性,在一定程度上增大了溶液的內部阻力,減緩團聚.非離子型表面活性劑Tx100可以強烈分散石墨類物質,且其含有苯環結構,可以增大空間位阻,故可用于在水性體系中分散CNFs.
實驗過程中發現,隨著時間的延長,CNFs懸浮液中會出現沉淀,懸浮液的吸光度也會隨之降低.這是由于表面活性劑在CNFs表面的吸附是一種物理作用,并沒有形成疏水化學鍵合,只是在CNFs的表面產生一種非共價表面修飾,經過一定的時間后,表面活性劑分子所形成的膠團會發生解析,造成CNFs再次團聚沉淀.
3結論
本文采用4種不同表面活性劑,通過紫外/可見分光光度計法、TEM及FESEM觀察、Zeta電位法、表面張力測試、靜置和離心分離法,對比了4種表面活性劑對CNFs的分散效果,得到如下結論.
(1)UV-vis測試和Zeta電位測試結果表明,4種表面活性劑中,SDS對CNFs的分散性最好,SDBS次之,而D-180好于PAA復合Tx100.
(2)TEM下觀察SDS與SDBS分散的CNFs懸浮液,可以看到CNFs纏結現象明顯得到改善,可觀察到單根CNF存在,SDS對CNFs的分散效果強于SDBS.
(3)通過表面張力儀分別測試了4種表面活性劑溶液在最佳摻量下的表面張力,實驗結果表明:SDS使溶液的表面張力下降到最低,最有利于CNFs的分散.
(4)4種表面活性劑中,SDS作為分散劑時CNFs懸浮液的穩定性最好.
(5)SDS與SDBS對CNFs的分散機理主要是在CNFs表面形成吸附膜,通過疏水連段之間的空間排斥力和自身電離產生的靜電斥力共同作用來實現分散.D-180和PAA復合Tx100則是對CNFs進行包覆,并通過基團之間的靜電斥力來實現對CNFs的分散.